マスクの解析学ノート 03 数列

大盛マスク 2017年5月25日

マスクの資料保管庫

http://worldinfo.wicurio.com/

TwitterID: @Uton_YaYuYo

これは未完成稿ですが、中間テストが近いため暫定公開します。

1 数列、部分数列の定義の注意

高校と定義が微妙に異なる。

高校のときは、数列、部分数列はともに有限個の数列を認めていたが、 解析の教科書だと無限個の数列・部分数列のみが議論されている。 よって、何も言わなくても、無限に続いていると考えるべし。

2 数列の極限パターン分け

- 収束
 - 「ずっと一定」
 - 「ある値に収束」
- 発散
 - 「∞に発散する」
 - 振動
 - * 「規則的に行き来する」
 - * 「不規則に行き来する」

なお、これ以降、数列を a_n とし、収束する場合は値をaとする。 また、「不規則に行き来する」パターンはまだ考えてません。

3 ある値に収束する ($\epsilon-N$ 論法)

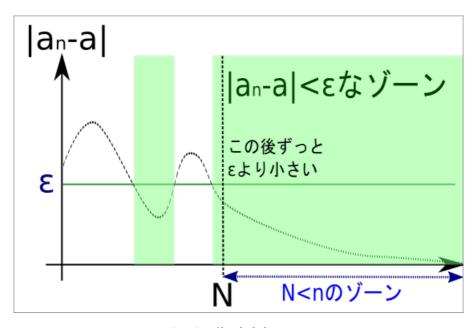


図1 ある値に収束する

$\lim_{x \to \infty} a_n = a$ の証明:定型文

任意な $\epsilon > 0$ に対して、

1つの自然数を
$$N>$$
 となるようにとれば、 $n>N$ ならば、 $|a_n-a|=$ n の式 $<$ N の式 $<\epsilon$

4 +∞に発散する

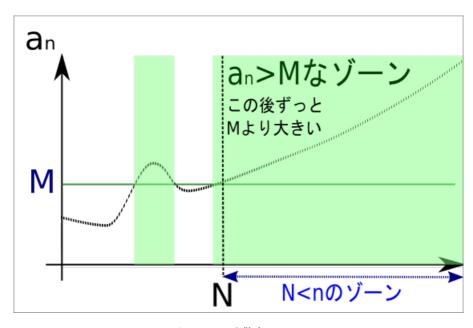


図 $2+\infty$ に発散する

4.1 a_n が ∞ に発散する証明:定型文

任意なM>0に対して、 1つの自然数を<math>N> となるようにとれば、 n>Nならば、 $|a_n-a|=\lceil n o \rightrightarrows \rceil > \lceil N o \rightrightarrows \rceil > M$

4.2 -∞に発散する

 $-a_n$ が $+\infty$ に発散することを証明する。

5 規則的に振動する

$$|a_{n+b}-a_n|=c(c\in\mathbf{R})$$

となるような数列を考える。
 $a_n\to a\ (n\to +\infty)$
と仮定すると、
 $a_{n+b}-a_n\to 0, (b\in\mathbf{Z})$ となるが、
規則的に変化するとき、
 $|a_{n+b}-a_n|=c$ なので、
 $a_n\to a\ (n\to +\infty)$ に反する。
よって、 a_n は収束しない。

参考文献

[1] 微分積分学·矢野健太郎·石原繁

6 更新記録

2017年05月25日リリース