行列式の定義 のバックアップ(No.2)


【2.2.3】線形代数学 Linear algebra
【2.2.3.3】行列式 Determinant
【2.2.3.3.1】行列式の定義

※ このページではMathJax を利用しております。環境によっては数式を表示できないかもしれません。

行列式のグラフ上の面積

二次の行列式と面積。

二次正方行列を見てみると、二本の縦ベクトルと見ることもできる。

\( A=\left(\begin{array}{ccc}a_x   b_x \\a_y   b_y \\\end{array}\right) \to \left(\begin{array}{c}a_x\\a_y\\\end{array}\right) と \left(\begin{array}{c}b_x\\b_y\\\end{array}\right) \)

(二次正方行列の)行列式とは、この二本の縦ベクトルで作れる平行四辺形の(符号付きの)面積のことを言い、

\( \left|\begin{array}{cc}a_x & b_x \\a_y & b_y \\\end{array}\right| \) あるいは \( \det A \) と表記する。

Det1.png

では、片方のベクトルを長くすると、どうなるか。

Det2.png

\( \vec{a} \)\( \lambda \vec{a} \) に伸ばすと、面積も \( \lambda \)になった。

同じことは\( \vec{b} \)を伸ばした場合にも言える。

このことから、

\( \left|\begin{array}{rr} \lambda\ a_x & b_x \\\lambda\ a_y & b_y \\\end{array}\right|= \lambda \left|\begin{array}{cc}a_x & b_x \\a_y & b_y \\\end{array}\right| \)

という計算式が成り立つことが分かった。

負の面積?

では、\( \lambda \) を負にするとどうなるか。

Det3.png

負の面積っていうのも、ピンと来ないかもしれないが、反対側\( \lambda \) 倍になってるのを見ると、負の面積というのも許していいかな……?という風に思える(思って)。

二次の線形多重性

Det4.png

以下執筆中

コメントはありません。 Comments/行列式の定義

お名前: URL B I U SIZE Black Maroon Green Olive Navy Purple Teal Gray Silver Red Lime Yellow Blue Fuchsia Aqua White