∫sin^4(x)cos^2(x)dx…(x:0→π/2)の積分 のバックアップ(No.1)


\[ \int^{\frac{\pi}{2}}_{0} \sin^4 x \cos^2 x dx \]
\[ = \int^{\frac{\pi}{2}}_{0} \sin^2 x ( \sin x \cos x )^2 dx \]
\[ = \int^{\frac{\pi}{2}}_{0} \frac{1-\cos 2x}{2} \frac{\sin^2 2x}{4} dx \]
\[ = \int^{\frac{\pi}{2}}_{0} \frac{1-\cos 2x}{2} \frac{\sin^2 2x}{4} dx \]

=(1/8) ∫ ( 1-cos(2x) ) sin^2(2x) dx
=(1/8) ∫ sin^2(2x) dx
   + (1/8) ∫ sin^2(2x) cos(2x) dx
=(1/8) ∫ ( 1-cos(4x) )/2 dx
   + (1/8) ∫ sin^2(2x) cos(2x) dx
=(1/16) ∫ ( 1-cos(4x) ) dx
   + (1/8) ∫ sin^2(2x) cos(2x) dx
=(1/16) [ x-(1/4)sin(2x) ]
   +(1/8) [ (1/6) sin^3(2x) ]
=(1/16) × (π/2)
=π/32