∫sin^4(x)cos^2(x)dx…(x:0→π/2)の積分
Last-modified: Wed, 08 Nov 2017 00:48:20 JST (2711d)
Top > ∫sin^4(x)cos^2(x)dx…(x:0→π > 2)の積分
スマホ版が見づらい場合はPC版をお試しください。
mathjax
\[ \int^{\frac{\pi}{2}}_{0} \sin^4 x \cos^2 x dx \]
mathjax
\[ = \int^{\frac{\pi}{2}}_{0} \sin^2 x ( \sin x \cos x )^2 dx \]
mathjax
\[ = \int^{\frac{\pi}{2}}_{0} \frac{1-\cos 2x}{2} \frac{\sin^2 2x}{4} dx \]
mathjax
\[ = \frac{1}{8} \int^{\frac{\pi}{2}}_{0} (1-\cos 2x) \sin^2 2x dx \]
mathjax
\[ = \frac{1}{8} \int^{\frac{\pi}{2}}_{0} \sin^2 2x dx - \frac{1}{8} \int^{\frac{\pi}{2}}_{0} \cos 2x \sin^2 2x dx \]
mathjax
\[ = \frac{1}{8} \int^{\frac{\pi}{2}}_{0} \frac{1-\cos 4x}{2} dx - \frac{1}{8} \int^{\frac{\pi}{2}}_{0} \cos 2x \sin^2 2x dx \]
mathjax
\[ = \frac{1}{16} \int^{\frac{\pi}{2}}_{0} (1-\cos 4x) dx - \frac{1}{8} \int^{\frac{\pi}{2}}_{0} \cos 2x \sin^2 2x dx \]
mathjax
\[ = \frac{1}{16} \left[ x-\frac{\sin 4x}{4} \right]^{\frac{\pi}{2}}_{0} - \frac{1}{8} \left[ \frac{\sin^3 2x}{6} \right]^{\frac{\pi}{2}}_{0} \]
mathjax
\[ = \frac{1}{16} \left( \frac{\pi}{2} - 0 \right) \]
mathjax
\[ = \frac{\pi}{32} \]
pcomment
コメントはありません。 Comments/∫sin^4(x)cos^2(x)dx…(x:0→π/2)の積分